

Basecam GPS_IMU serial protocol specification

Hardware: GPS_IMU v.1.0, v.1.2

Firmware: 1.x and 2.x

Revision history:

rev. 0.1 - 01.03.2019: preliminary version
 rev. 0.2 - 31.12.2019: minor errors fixed

• rev. 0.3 – 13.03.2020: add support of GPS IMU v.1.2

Overview

Communications is initiated from the remote side (host) by sending *outgoing* commands. The controller may do some action and send response (for the host it is an *incoming* command).

Remote side is responsible for preventing output and input buffers from overflow. For example, if requested too big amount of data that does not fit into the output buffer, the excessive data in response will be skipped. Input and output buffers are 512 bytes size.

Board can work on different serial baud rates, adjustable by the parameters, with the 115200 as default value.

The main set of coordinate systems:

Ground reference frames:

NED (North-East-Down)

- · Right-handed, Cartesian, non-inertial
- Geodetic frame with origin located at the surface of Earth (WGS84 ellipsoid)
- Positive N-axis points towards North (tangent to WGS84 ellipsoid)
- Positive E-axis points towards East (tangent to WGS84 ellipsoid)
- Positive D-axis points down into the ground, completing the right-handed system

ECEF (Earth-Centered Earth-Fixed) (In developing)

- Right-handed, Cartesian, non-inertial
- Frame with origin located at the center of Earth
- Fixed to and rotates with Earth
- Positive X-axis aligns with the WGS84 X-axis, which aligns with the International Earth Rotation and Reference Systems Service (IERS) Prime Meridian.
- Positive Z-axis aligns with the WGS84 Z-axis, which aligns with the IERS Reference Pole (IRP) that points towards the North Pole.
- Positive Y-axis aligns with the WGS84 Y-axis, completing the right-handed system.

LLA (Latitude, Longitude, Altitude)

- Non-inertial
- Geodetic frame with origin located at the surface of Earth (WGS84 ellipsoid)
- Latitude is defined as the angle from the equatorial plane to a line normal to the surface of the WGS84 ellipsoid at the location of the vehicle
- Longitude is defined as the east-west angular displacement measured positive to the east from the IERS Reference Meridian to the location of the vehicle

Body reference frames:

XYZ (X, Y, and Z axes labeled on the hardware)

- Right-handed
- Positive right-hand rotation
- Roll angle rotation around the X-axis

- Pitch angle rotation around the Y-axis
- Yaw (heading) angle rotation around the Z-axis

AHRS (Attitude and heading reference system) format:

QUAT (quaternions (w, x, y, z))

- · Body frame to NED frame
- The first term is the scalar value

DCM6 (rotation matrix, direction cosine matrix)

- Body frame to NED frame
- Contains only the first and third rows of the rotation matrix.
- The second row can be calculated as cross-product of the first and third rows of the rotation matrix.

DCM9 (rotation matrix, direction cosine matrix)

- · Body frame to NED frame
- Regular form of rotation matrix

Euler angles (1-2-3) (roll, pitch, yaw (heading))

Euler angles (3-2-1) (yaw (heading), pitch, roll)

Message format

Each command consists of the *header* and the *body*, both with checksum. Commands with the wrong header or body checksum, or with the body size that differs from expected, should be ignored. Parser should scan incoming datastream for the next start character and try to restore synchronization from it.

Input and output commands have the same format, described below:

	hea	der		bod	y .	crc16		
start character \$ (0x24)	command ID, 0255	payload size N=0255	header checksum	pay	load, var	able size	mes: checl	
0	1	2	3	4		4+N-1	4+N	4+N+1

Header checksum is calculated as (command ID + payload_size) modulo 256 (operation "modulo" means least significant byte of the sum).

Message checksum is calculated as a CRC16 over the header bytes and payload bytes, starting from index 1 to index 4+N-1. A reference implementation of CRC16 using polynomial 0x8005 is given in the appendix A.

Example messages

CMD GET USER CONF LOG:

	hea	cro	:16		
0	1	2	3	4	5
0x24	0x0C	0x00	0x0C	0x60	0x03

CMD_USER_CONF_LOG:

Active channels for STREAM1 (ACTIV_CH_MASK = 0x00000109): 0, 3, 8. Interval between the data samples for STREAM1 (INTERVAL_MS = 0x0064): 100 ms. Active channels for STREAM2 (ACTIV_CH_MASK = 0x00000000): all disabled. Interval between the data samples for STREAM2 (INTERVAL_MS = 0x0064): 100 ms.

		hea	ıder					pay	payload						crc16			
0)	1	2	3	4	4 5 6 7 8 9 10 11 12 13 14 15							16	17				
0x2	24	0x0D	0x0C	0x19	0x09	0x01	0x00	0x00	0x64	0x00	0x00	0x00	0x00	0x00	0x64	0x00	0xD5	0xE8

Data type notation

- 1u 1 byte unsigned
- 1s 1 byte signed
- 2u 2 byte unsigned (little-endian order)
- 2s 2 byte signed (little-endian order)
- 4f float (IEEE-754 standard)
- 4s 4 bytes signed (little-endian order)
- 4u 4 bytes unsigned (little-endian order)
- 8d double (IEEE-754 standard)
- string ASCII character array, first byte is array size
- Nb byte array size N

Commands brief definition

Incoming (from sensor to controller):

Name	ID			
CMD_CONFIRM	1	Confirmation of previous command or finished calibration		
CMD_RESET_NOTIFY	3	Notification on device reset		
CMD_DEVICE_INFO	5	Board and firmware information		
CMD_DATA	8	Configurable realtime data		
CMD_USER_CONF_LOG	13	Configuration of user data log		

Outgoing (from controller to sensor):

Name	ID	
CMD_RESET	2	Reset device
CMD_GET_DEVICE_INFO	4	Request board and firmware information

CMD_GET_DATA	6	Request configurable realtime data
CMD_GET_DATA_STREAM	7	Register or update data stream
CMD_CALIB	9	Calibration of the built-in sensors
CMD_BOOT_MODE	10	Enter firmware update mode (STM32 hardware loader)
CMD_USER_DATA_LOG	11	Contains data for logging to SD
CMD_GET_USER_CONF_LOG	12	Request configuration of user data log

Incoming commands

CMD_CONFIRM – confirmation of previous command or finished calibration

Name	Туре	Possible values, remarks					
CMD_ID	1u	Command ID to confirm					
DATA	2u	DATA depends on command to be confirm					

CMD_DEVICE_INFO – board and firmware information

Name	Туре	Possible values, remarks
HARDWARE_VER	4u	Hardware version. This field includes the two values defined below.
		HARDWARE_VER_MAJOR = (int)(HARDWARE_VER >> 8) HARDWARE_VER_MINOR = (int)(HARDWARE_VER & 0x000000FF)
		The major version number is defined as the position number of a non-zero bit in the HARDWARE_VER_MAJOR.
HARDWARE_CMP	4u	Used as a bitmask for the major part of the HARDWARE_VER field to determine software and hardware compatibility.
		Test Example: HARDWARE_VER & HARDWARE_CMP & 0xFFFFFF00
SOFTWARE_VER	2u	Format: X.Y, where X = (int)(SOFTWARE_VER/100), Y = (int)(SOFTWARE_VER%100)
BUILD_NUMBER	4u	
MCU_SN	12b	MCU ID, unique
DEVICE_ID	9b	Unique Id used to identify each controller in licensing system
RESERVED	7b	

CMD_RESET_NOTIFY – notification on device reset

Name	Type	Possible values, remarks
CMD_ID	1u	ID of the command that caused the reset

CMD_DATA - configurable realtime data

Name	Size	Туре	Bit	Name structure	Units	Possible values, remarks					
FLAGS	Each bit in this field encodes the data set included in this command. Value is copied from the "FLAGS" field in the CMD_GET_DATA. See its specification for details.										
	4	4u									
FLAGS_EXT	FLAGS_EXT This field present only if the FLAGS.bit31 is set. It extends the possible set of flags. Reserved for future use.										
	4	4u									

TIMESTAMP_MS	Timestamp							
	4	4u		Timestamp	ms			
AHRS_STATUS								
_			bit0	ATTITUDE_INIT_OK		set if attitude is initialized from accelerometer		
			bit1	HEADING_INIT_OK		set if heading is initialized from the reference sensor (compass or GPS)		
			bit2	HEADING_REF_ENA	ABLED	set if heading is referenced by sensor (compass or GPS)		
	2	2u	bit3	GNSS_REF_ENABL	ED	set is GNSS is used in a sensor fusion algorithm		
			bit4	QUALITY_CONDITION	ON	BAD = 0,		
			bit5			COARSE = 1, GOOD = 2, FINE = 3		
			bit0	TERMOSTAT_TARG	ET	set if thermostat has reached the target temperature		
			bit1	RTC_BAT_VALID*		set if the battery (backup RTC) is installed and not discharged		
HW_STATUS	2	2u	bit2	SD_INSTALLED		set if SD is installed and functions correctly		
			bit3	GNSS_ERROR		set if HW error GNSS subsystem		
			bit4	MAG_ERROR				
			bit5	IMU_ERROR				
			bit6	CALIB				
	Asse		t of the	e quality of sensor fusi	on on a s	scale from 0 to 255. Value of 255 means the best		
		1u	FUSI	FUSION_QLT_IMU		IMU		
FUSION_QLT		1u	FUSI	ON_QLT_MAG		Magnetometer		
1 00101_QL1	5	1u	FUSI	ON_QLT_GNSS		GNSS		
		1u	FUSI	ON_QLT_BARO		Barometer		
		1u	Rese	rved				
	Attitu	de in ſ	OCM6	format.				
	, terro	4f	DCM					
		4f	DCM					
DCM6		4f	DCM					
	24	4f	DCM:					
		4f	DCM:					
		4f	DCM:					
QUAT	Attitu	de in d	quaterr	nion format.				
	16	4f	Q_W					
		4f	Q_X					
	1							

		Λf	0. V								
		4f	Q_Y								
		4f	Q_Z								
	Attitu	de in E	e in Euler angle (3-2-1) format.								
EULER321		4f	YAW	degree							
EULERSZI	12	4f	PITCH	degree							
		4f	ROLL	degree							
	Linear acceleration (without gravity) in XYZ reference frame. Gravity component has been removed using the current gravity reference vector estimate. In the stationary case, measurements on all axes are near zero.										
ACC_XYZ_LINER		4f	ACCEL_X	m/s^2							
	12	4f	ACCEL_Y	m/s^2							
		4f	ACCEL_Z	m/s^2							
	remo	ved us		nce vect	ence frame. Gravity component has been or estimate. In the stationary case,						
ACC_NED_LINER		4f	ACCEL_N	m/s^2							
	12	4f	ACCEL_E	m/s^2							
		4f	ACCEL_D	m/s^2							
	Velocity in XYZ reference frame.										
	VOICE	4f	VELO_X	m/s							
VELO_XYZ	12	4f	VELO_Y	m/s							
		4f	VELO_Z	m/s							
	Velocity in NED reference frame.										
VELO_NED		4f	VELO_N	m/s							
	12	4f	VELO_E	m/s							
		4f	VELO_D	m/s							
\/EI	Veloc	ity un	certainty.								
VELO_U*	4	4f	VELO_U	m/s							
	Posit	ion in l	NED reference frame. Startir	na noint is	s taken as the origin						
	1 Ook	4f	POS_N	m m	and the distribution of the state of the sta						
POS_NED	12	4f	POS_E	m							
		4f	POS_D	m							
			_	I							
	Posit		LLA reference frame.		T						
POS_LLA		8d	POS_LAT	degree	Latitude						
	24	8d	POS_LON	degree	Longitude						
		8d	POS_ALT	m	Altitude						
DOC 11t	Posit	ion un	certainty.								
POS_U*	4	4f	POS_U	т							

	Magr Iron o	netic fi calibra	eld in XYZ reference frame. tion stored in flash) and by	This mea	surement is compensated by the static (Hard/Soft ic calibration (Hard Iron).				
MAG_XYZ		4f	MAG_X	Gauss					
	12	4f	MAG_Y	Gauss					
		4f	MAG_Z	Gauss					
	(Hard	Magnetic field in NED reference frame. This measurement is compensated by the static (Hard/Soft Iron calibration stored in flash) and by the dynamic calibration (Hard Iron). The current attitude solution is used to map the measurement from the measured XYZ frame to NED frame.							
MAG_NED		4f	MAG_N	Gauss					
	12	4f	MAG_E	Gauss					
		4f	MAG_D	Gauss					
			e in XYZ reference frame. T ash) and dynamic calibratior		urement is compensated by the static (calibration				
GYR_XYZ		4f	GYR_X	rad/s					
	12	4f	GYR_Y	rad/s					
		4f	GYR_Z	rad/s					
GYR_NED	store	d in fla sureme	ash) and dynamic calibration ent from the measured XYZ	n. The curi frame to I	urement is compensated by the static (calibration rent attitude solution is used to map the NED frame.				
GTK_NED		4f	GYR_N	rad/s					
	12	4f	GYR_E	rad/s					
		4f	GYR_D	rad/s					
	Acceleration (with gravity) in XYZ reference frame. This measurement is compensated by the static calibration (calibration stored in flash).								
ACC_XYZ		4f	ACC_X	m/s^2					
7.00_7.12	12	4f	ACC_Y	m/s^2					
		4f	ACC_Z	m/s^2					
	statio	calibr		lash). The	ne. This measurement is compensated by the current attitude solution is used to map the NED frame.				
ACC_NED		4f	ACC_N	m/s^2					
	12	4f	ACC_E	m/s^2					
		4f	ACC_D	m/s^2					
	GNS	S state	e solution. Update data rate	10 Hz.					
GNSS_STATE	2	1u	GNSS_FIX		0 – no fix, 1 – dead reckoning only, 2 – 2D-fix, 3 – 3D-fix				
		1u	GNSS_SAT		The number of tracked GNSS satellites				
GNSS_POS_LLA	GNS	S posi	tion in LLA reference frame	Update d	lata rate 10 Hz				
5.155_1 50_LLA	24	8d	GNSS LAT	degree	Latitude				
		8d	GNSS_LON	degree	Longitude				
		Gu	0/100_2011	acgree	2011911440				

		8d GNSS_ALT			Altitude			
	CNIC	C 4:11:14	to 10 Hz					
	GNO	4f	ion of precision (DOP). Upda	le data i	Geometric DOP			
			9					
		4f	pDOP		Position DOP			
GNSS_DOP		4f	tDOP		Time DOP			
	28	4f	vDOP		Vertical DOP			
		4f	hDOP		Horizontal DOP			
		4f	nDOP		Northing DOP			
		4f	eDOP		Easting DOP			
	GNS	S velo	city in NED reference frame.	Update	data rate 10 Hz.			
		4f	GNSS_VEL_N	m/s				
GNSS_VEL_NED	12	4f	GNSS_VEL_E	m/s				
		4f	GNSS_VEL_D	m/s				
GNSS_VEL_U	GNSS velocity uncertainty. Update data rate 10 Hz.							
	4	4f	GNSS_VEL_U	m/s				
	Absolute air pressure.							
BARO_PRSR	4	4f	BARO_PRSR	kPa	Typical pressure at sea level would be around 101.325 kPa.			
BARO ALT	Barometric altitude.							
_	4	4f	BARO_ALT	m				
TEMP_BOARD	Sensor temperature on board							
12.00.	00110	4f	TEMP_IMU	С				
	12	4f	TEMP_BARO	С				
	12	4f	TEMP_CPU*	C				
	41 TEMP_CPU" C							
AVERAGE_TIME		se tim _MASI		eraged f	or this sample (if averaging is enabled by the			
	4	4f AVERAGE_TIME s						
	1		_	1				

CMD_USER_CONF_LOG - configuration of user-defined data enabled for logging

	Name	Туре	Bit	Possible values, remarks
STRE	ACTIV_PIPE_MAS K	4u	bit0 - bit31	Bitmask of the pipes enabled for logging in this stream, where the bit number corresponds to the index of a pipe. To save bandwidth, send only data of pipes that are enabled.
TREAM1	INTERVAL_MS	2u		Interval between log events in this stream. Use it for reference only; you can send data with different interval (see CMD_USER_DATA_LOG for details)
	ACTIV_PIPE_MAS K	4u	bit0 - bit31	the same as above

STRE	INTERVAL_MS	2u	the same as above
EAM2			

Outgoing commands

CMD GET DEVICE INFO – request board and firmware information

No parameters

CMD_RESET - reset device

Name	Туре	Possible values, remarks
CONFIRM	1u	0 – no confirmation 1 - command CMD_RESET_NOTIFY will be sent back for confirmation before device reset
DELAY_MS	2u	Waits for a given time (in ms) before reset.

CMD_GET_DATA_STREAM – register or update *data stream* – a commands sent by the controller with the fixed rate

For each serial interface, only one unique combination of CMD_ID + CONFIG bytes may be registered. If the data stream is already registered, it will be updated. To unregister it, specify INTERVAL_MS=0. The total number of data streams over all serial interfaces is limited to 10.

Take care of the serial bandwidth: if data flow exceeds bandwidth, particular samples may be skipped.

The interval is maintained with the +-1ms tolerance for the individual sample, but the averaged sample rate exactly matches to specified. If the data stream is successfully registered or updated, the CMD_CONFIRM is sent in answer.

All vector-like variables (for example, gyroscope and accelerometer) may be preintegrated to process them at lower data rate without loosing of information. The averaging can be enabled using the AVG_MASK parameter. Averaged values have the same units as the instant values. They can be converted to integrals (*theta_angle, theta_velocity*) by multiplying by the "AVERAGE_TIME" variable.

$$avg(v(t),t,T) = \frac{\int_{t}^{t+T} v(t) \cdot dt}{T}, \sum_{i=0}^{N} T_{i} = t(N)$$

Name	Туре	Possible values, remarks			
CMD_ID	1u	Command ID to be sent by this data stream. All supported commands are listed for the "CONFIG" parameter below. If the command is set to 0, all data streams will be disabled.			
INTERVAL_MS	2u	Interval between messages, in milliseconds. Send value 0 to unregister data stream.			
CONFIG	8b	Bit mask specified in the CMD_GET_DATA • FLAGS1 – 4u • FLAGS2 – 4u			
AVG_MASK	8b	For the bits in mask set to 1, the corresponding data will be averaged on the given time interval INTERVAL_MS. The exact average time for each sample in this data stream can be received in the variable AVERAGE_TIME • FLAGS1_AVG – 4u • FLAGS2_AVG – 4u			
RESERVED	16b				

CMD_GET_DATA – request configurable realtime data

Name	Туре	Bit		Possible values, remarks	
FLAGS		tailed description of the data structure is provided in the CMD_DATA specification. bit specifies which data set to include in response:			
	4u	bit0	TIMESTAMP_MS	Timestamp	
		bit1	AHRS_STATUS	AHRS status	
		bit2	HW_STATUS	Hardware status	
		bit3	FUSION_QLT	Assessment of the quality of sensor fusion	
		bit4	DCM6	Attitude in DCM6 format	
		bit5	QUAT	Attitude in quaternion format	
		bit6	EULER321	Attitude in Euler angle (3-2-1) format	
		bit7	ACCEL_XYZ	Linear acceleration (without gravity) in XYZ reference frame	
		bit8	ACCEL_NED	Linear acceleration (without gravity) in NED reference frame	
		bit9	VELO_XYZ	Velocity in XYZ reference frame	
		bit10	VELO_NED	Velocity in NED reference frame	
		bit11	VELO_U	Velocity uncertainty	
		bit12	POS_NED	Position in NED reference frame	
		bit13	POS_LLA	Position in LLA reference frame	
		bit14	POS_U	Position uncertainty	
		bit15	MAG_XYZ	Magnetic field in XYZ reference frame	
		bit16	MAG_NED	Magnetic field in NED reference frame	
		bit17	GYR_XYZ	Angular rate in XYZ reference frame	

		bit18	GYR_NED	Angular rate in NED reference frame
		bit19	ACC_XYZ	Acceleration (with gravity) in XYZ reference frame
		bit20	ACC_NED	Acceleration (with gravity) in NED reference frame
		bit21	GNSS_STATE	GNSS state solution
	bit23		GNSS_POS_LLA	GNSS position in LLA reference frame.
			GNSS_DOP	GNSS dilution of precision (DOP)
			GNSS_VEL_NED	GNSS velocity in NED reference frame
		bit25	GNSS_VEL_U	GNSS velocity uncertainty
		bit26	BARO_PRSR	Absolute air pressure
		bit27	BARO_ALT	Barometric altitude
		bit28	TEMP_BOARD	Sensor temperature on board
		bit29	AVERAGE_TIME	Time interval for averaging
		bit30	RESERVED	
		bit31	use FLAGS_EXT parameter	
FLAGS_EXT		/alue is		31 is set. It extends the range of "FLAGS" field and reserved
	4u	bit0	RESERVED	
		bit1	RESERVED	
	b b b b b		RESERVED	
		bit8	RESERVED	
		bit9	RESERVED	
		bit10	RESERVED	
		bit11	RESERVED	
		bit12	RESERVED	
		bit13	RESERVED	
		bit14	RESERVED	
		bit15	RESERVED	
		bit16	RESERVED	
		bit17	RESERVED	
		bit18	RESERVED	
		bit19	RESERVED	
		bit20	RESERVED	
		bit21	RESERVED	
		bit22	RESERVED	
		bit23	RESERVED	

		bit24	RESERVED	
		bit25	RESERVED	
		bit26	RESERVED	
		bit27	RESERVED	
		bit28	RESERVED	
		bit29	RESERVED	
		bit30	RESERVED	
		bit31	RESERVED	
RESERVED	4b			

CMD_CALIB - calibration of the built-in sensor

If the calibration process is successfully started, the CMD_CONFIRM (with DATA [1u: SENSOR_TYPE, 1u: 0]) is sent in response. After successful completion of the calibration process, the CMD_CONFIRM (with DATA [1u: SENSOR_TYPE, 1u: 1]) is sent.

Name	Туре	Possible values, remarks			
SENSOR_TYPE	1u	1 – Accelerometer, 2 – Gyroscope, 3 – Magnetometer			
CALIB_MODE	1u	0 – Simple, 1 – Precision (Use only on calibration stand)			
CALIB_VALUE	2u	0 – Start calibration, > 0 – End calibration with this value (only precision mode) In the case of gyroscope calibration, the value is defined as angle of rotation with a resolution of 0.1 degrees. In the case of calibration of the accelerometer, the value is defined as linear acceleration with a resolution of 0.01 m/s.			
RESERVED	7b				

CMD_BOOT_MODE – Enter firmware update mode (STM32 hardware loader)

Name	Туре	Possible values, remarks			
CONFIRM		0 – no confirmation 1 - command CMD_RESET_NOTIFY will be sent back for confirmation before device reset			
DELAY_MS	2u	Waits for a given time (in ms) before reset and enter firmware update mode			

CMD_USER_DATA_LOG - Contains data for logging to SD card

Send user-defined data to be logged to SD card, if it is configured and enabled in the

"CONF_LOG.INI". Data goes in a pipes, each pipe have its type and number of values, specified in the "PIPE_CONF" field. This configuration should exactly match the pipe configuration in the "CONF_LOG.INI", otherwise data will be skipped.

The PIPES[] array should be ordered by the index of a pipe.

You can send several sets of pipes with different rates in multiple messges, if there are high-rate and low-rate varying data.

Note the logging event is not synchronized with this message - it always use the latestly arrived data, regardless of the rate it comes. You can pass a custom timestamp as a part of user-defined data to have precise time information.

Nan	Name Type		Bit	Name structure	Possible values, remarks	
AC ⁻ SK	ACTIVE_PIPE_MA 4u SK		bit0 - bit31	Bitmask specify active pipes transferred in this message. The index of each bit (031) corresponds to the index of each pipe; the number of enabled bits should match the number N of elements in PIPES[] array further in this message.		
PIPES[N]	PIPE_CONF	1u	bit0 - bit3 bit4 - bit5	PIPE_SIZE PIPE_TYPE RESERVED	Number of values in this channel, 115 Type of values: 0 – reserved, 1 – 4f, 2 – 4s, 3 – 2s,	
PIPE_DATA Variable Data set define				set defined as an array of value	es with type (PIPE_TYPE) and size (PIPE_SIZE).	

CMD_GET_USER_CONF_LOG – request a configuration of user-defined data for logging No parameters.

The CMD USER CONF LOG is sent in response.

Appendix A: Code examples

CRC16 reference implementation in C

```
void crc16_update(uint16_t length, uint8_t *data, uint8_t crc[2]) {
    uint16_t counter;
    uint16_t polynom = 0x8005;
    uint16_t crc_register = (uint16_t)crc[0] | ((uint16_t)crc[1] << 8);</pre>
    uint8_t shift_register;
    uint8_t data_bit, crc_bit;
    for (counter = 0; counter < length; counter++) {</pre>
        for (shift_register = 0x01; shift_register > 0x00; shift_register <<= 1) {</pre>
            data_bit = (data[counter] & shift_register) ? 1 : 0;
            crc bit = crc register >> 15;
            crc_register <<= 1;</pre>
            if (data_bit != crc_bit) crc_register ^= polynom;
        }
    }
    crc[0] = crc register;
    crc[1] = (crc_register >> 8);
}
void crc16_calculate(uint16_t length, uint8_t *data, uint8_t crc[2]) {
    crc[0] = 0; crc[1] = 0;
    crc16_update(length, data, crc);
}
```

Command ID definitions

```
#define CMD_CONFIRM 1
#define CMD_RESET 2
#define CMD_RESET_NOTIFY 3
#define CMD_GET_DEVICE_INFO 4
#define CMD_DEVICE_INFO 5
#define CMD_GET_DATA 6
#define CMD_GET_DATA_STREAM 7
#define CMD_DATA 8
#define CMD_CALIB 9
#define CMD_BOOT_MODE 10
#define CMD_USER_DATA_LOG 11
#define CMD_GET_USER_CONF_LOG 12
```